

The Águilas-Guadalentín desalt plant

Desalt station plant in Spain.

With a capacity of up to 210,000 m3 / day, the Águilas-Guadalentín desalination plant complements the supply of the irrigation demands of the southern area of the Segura Basin, and of supply to the municipalities of Lorca and Águilas (Spain). The plant also has important distribution and pumping systems for different users and advanced systems for the diffusion and dissolution of brine in the sea, promoting environmental protection.

The treatment process consists of:

1st Pretreatment by means of double filtration stage (by gravity and pressure)

2nd Reverse osmosis with double pass for boron removal

3rd Energy recovery through isobaric chambers

4th Remineralization

Features:

Type: Desalination plant
Location: Águilas (Spain)

• Start of construction: March 2013

• Estimated investment: 228,000,000 EUR

• Stations: 12

• Contractor: TUC Ferrovial + Sacyr +

Cadagua + Sadyt

1. Lower energy consumption

HIGH PRESSURE AND ENERGY RECOVERY SYSTEM

The Aguilas/Guadalentin desalination plant has one of the most highly optimised high-pressure systems in the world.

Basically, the innovations consist in converting a plant's high-pressure pumping system into a system containing two sets of equipment:

- Booster pump with high frequency driver
- High pressure pump

The installation has a DWEER-type fixed chamber energy recovery system. These exchangers are devices for transferring the high pressure from brine backflow to the seawater without converting it into rotary mechanical energy.

2. Water pre-treatment

LOW SPEED PRE-TREATMENT WITH LARGE GRAVITATIONAL FILTERS AND PRESSURISED FILTERS

Gravity filtering

In order to effectively eliminate solids suspended in seawater, the first filter stage is performed

on a bed of anthracite (0.8m), and then sand (0.4m) over a gravel under-layer (0.1m). The design comprises two lines, each with 10 filters with filter beds of 17 x 11.5 m2 giving a unit area of 195.5 m2.

Pressure filtering

The gravity-filtering phase is followed by pressure filtering in order to virtually guarantee the elimination of suspension solids from the seawater.

3. Water Qualit

BORON REMOVAL DURING THE SECOND PASS

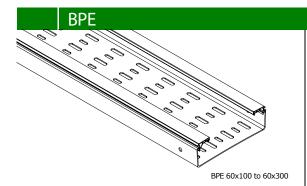
A fraction of the 60-80 % permeate produced in the first pass will be sent to a second, partial, pass with 90% conversion that will act as a boron content regulator. This way, and after it has been mixed with remaining flowing water, the boron content obtained is less than 0.5 ppm within the temperature range as designed. The backflow generated in this second pass will be recirculated and mixed with intake water, achieving an overall conversion of 43.5%.

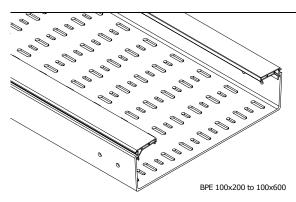
The filter beds have a layer of silica sand (0.65 m) followed by a layer of gamet (0.25 m) and then gravel (0.2 m).

	GENERAL TABLE
Current status	Under Construction
Maximum production	181,000 m³/day (extensible to 212,000 m3/day)
Benefited population	130,000 inhabitants
Irrigated land in hectares	9,600 Hectares
Desalination process	Reverse osmosis
Number of Reverse Osmosis frames	12 (+2 future) 1st pass / 5 (+1 future) 2nd pass
Number of high pressure racks	12
Type of intake	Open intake. 5.5 m diameter underwater cylindrical reinforced concrete tower. Tower height is 5m with 17.60
27.	m-deep foundations. Intake is through six 1.5 m-high cubical cells located on the upper part of the tower.
	Pump Station I – At Salinares: 4+1 elements. Hm=220 m.
Desalinated water pumps	PS I – to the Mancomunidad de los Canales del Taibilla.: 3+1 elements. Hm=50 m.
Doddinatod Water parripe	PS I – To Alto Guadalentín, 1st Step: 11+1 elements. Hm=180 m.
	PS II – To Alto Guadalentín, 2nd Step 9+1 elements. Hm=145 m.
	PS II - To CRR at Águilas: 1+1 elements. Hm= 50 m.
	PS II - To CRR at Pulpi: 2 + 1 elements. Hm=60m.
	5,258 m – Ductile cast - DN 700 mm; 3,302 m - Ductile cast – DN 500 mm;
Pump pipe	11,468 m - Steel - DN 1,200 mm; 5,524 m - Steel - DN 1,000 mm; 1,190 m - Ductile cast - DN 350 mm
т итр ріре	890 m - HDP DN 1,200 mm
Outfall pipe	2,867 m - HDP DN 1,400 mm PN 6 SDR 26 (53.5)
Оппан ріре	225 m - Reinforced concrete jacked pipe (RC) DN 2,000 mm
Intoka nina	Stretch on land: 730 m of GRP DN 2,200 mm PN 10; 2,880 m of GRP DN 2,200 mm PN 6; 42 m – RC jacked pipe DN; 3,000
Intake pipe	
	mm /157 m - RC jacked pipe DN 3,000 mm;
	Underwater Intake: 510 m - HDP DN 2.200 mm type KRAH SDR 26; 401 m - POLYCRETE jacked pipe
	DN 2,400 mm
Regulator tank	In plant - 1 of 15,000 m³; In PS II - 1 de 2,900 m³
T. 1	Reservoir Cerro Colorado (+365 m) 121,000 m3
Total installed capacity	64 MW
Concession period	15 years 238.29 million euros
Investment	
Financing from European funds	48 million euros
Investment	040.47 78
Desalination Plant	218.17 million euros
Distribution pipelines	20.12 million euros
Distribution capacity	
Cubic metres per day	212,000 m³/day.
Cubic hectometres per year	70 hm³/year
Energy data	
Electric power (kW)	56,70 MW
Voltage	132 kV
Specific energy consumption	4,623 kWh/m³ (excluding distribution)
Pretreatment configuration	20 open filters
	42 in steel and 2 in GRP
	24 in GRP
Reverse osmosis rack configuration	
Membrane type	8" x 40" spiral-wound membrane
Number of passes	2
Number of stages	1 stage in 1st pass and 2 stages in 2nd pass
Vessels and membranes per pass and stag	e 1° pass: 190 vessels*12 racks *7 elements. = 15,960 membranes.
	2nd pass 1st stage: 86 vessels * 5 racks * 7 elements. = 3,010 membranes.
	2nd pass 2 ^a stage: 30 vessels * 5 racks * 7 elements = 1,050 membranes.
Post-treatment configuration	Slaked lime with lime saturator + CO2 + hypochlorite

Participating companies:

Building was awarded to the TBA comprising Ferrovial-Sacyr-Cadagua-Sacyt.


Pre-treatment and post-treatment engineering developed by Sadyt and Cadagua developed the reverse osmosis process, from basic engineering to start-up, including the supply of the equipment and the plant's coordination and setting up. Technical assistance in Project Management by Inypsa.


Plant operation was outsourced to the TBA for 15 years.

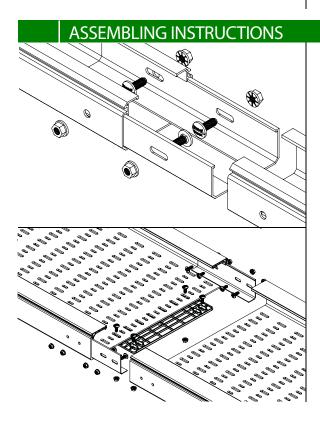
BASORPLAST BPE

UL 568

DATA SHEET INSTALLED PRODUCT

Models (HxB):

60x100; 60x150; 60x200; 60x300; 100x200; 100x300; 100x400; 100x600.


Types: Slotted or solid bottom.

Finishes: PVCM1 UV RAL 7035

Characteristics of the tray:

- Non metallic system

- Resistant to UV radiation. Excellent behaviour in outdoor installation.
- Impact Strength: 20J, except 60x100 with 10J
- Minimum temperature: -4 °F - Maximum temperature: 140 °F
- Non-flame propagating component
- Without electrical continuity
- Electrical insulating component
- Dielectric Strength 18 +/- 2 kV/mm
- Hight protection inside and outside against corrosive substances
- Plastic system resistant to humidity/salty and chemical environments according to DIN 8061 and iISO/TR 10358
- M1 reaction to fire acc. to UNE 23727
- Glow wire test degree 1760 °F, EN 60695-2-11
- Flammability UL 94-VO, ANSI/UL 94-1995
- Limiting Oxigen Index LOI>50%, EN ISO 4589
- Comply with RoHS directive, 2011/65/UE
- Raw material without silicone

- For the assembly, two union joints and four M8 Bolt sets are needed for each stretch (8 for H100 models). For trays with a width ≥ 400 mm it is necessary to use the JUBPE-C base joint to acomplish the requirements of full load transverse arrow indicated by IEC 61537. This union requires 4 screw set CTBP M8 PVC, and it can be placed inside or outside the cable tray.
- Tray installation for electrical systems should NOT run under other types of canalisations such as water, vapour or gas canalisations.
- To guarantee a good ventilation, we recommend installing the trays keeping a minimum distance of 250 mm between each tray.
- Suitable for wet, salty and chemical agresive enviroments.
- -To assure good performance under expansions , the increase in temperature must be noted, between the installation and the maximum temperature expected. Depending on the expected growth in the temperature (ΔT) leave a gap (h) between cable trays according to the following table :

ΔT (°F)	h (mm)
68	5
86	7
104	9
122	11

TESTS RESULTS ACCORDING TO UL 568

- Safe working load:

SWL values for 104 °F

NEMA	Safe Working Load - kg/m (lb/ft)			
classification	MODEL	2,4 m (8 ft)	1,8 m (6 ft)	1,5 m (5 ft)
-	BPE-60x100	3,1 (2,1)	5,5 (3,7)	8 (5,4)
-	BPE-60x150	4,2 (2,8)	7,6 (5,1)	10,9 (7,3)
-	BPE-60x200	19,3 (13)	34,3 (23,1)	49,5 (33,2)
5AA	BPE-60x300	21,2 (14,2)	37,8 (25,4)	54,4 (36,5)
5A	BPE-100x200	33,1 (22,3)	59 (39,6)	84,9 (57,1)
8AA	BPE-100x300	52,4 (35,2)	93,2 (62,6)	134,3 (90,2)
8A	BPE-100x400	81,3 (54,6)	144,6 (97,2)	208,3 (140)
8B	BPE-100x600	121,7 (81,8)	216,5 (145,4)	311,7 (209,5)

SWL values for 140 °F

NEMA	Safe Working Load - kg/m (lb/ft)			
classification	MODEL	2,4 m (8 ft)	1,8 m (6 ft)	1,5 m (5 ft)
-	BPE-60x100	2 (1,3)	3,6 (2,4)	5,2 (3,5)
-	BPE-60x150	2,7 (1,8)	4,9 (3,3)	7,1 (4,7)
-	BPE-60x200	12,6 (8,4)	22,4 (15)	32,2 (21,6)
-	BPE-60x300	13,8 (9,3)	24,6 (16,5)	35,4 (23,8)
5AA	BPE-100x200	21,6 (14,5)	38,4 (25,8)	55,3 (37,1)
5A	BPE-100x300	34,1 (22,9)	60,7 (40,8)	87,4 (58,7)
8AA	BPE-100x400	53 (35,6)	94,2 (63,3)	135,7 (91,1)
8A	BPE-100x600	79,3 (53,3)	141 (94,7)	203 (136,4)

NOTE: Tests according to UL 568 Method A (Load Before Destruction), with 1.5 Safety factor

- Water absorption: The absorption of water by the material is minor than 0.5 percent.
- Dielectric strength: There is no dielectric breakdown in the material after conditioning.
- Weathering: The material retain more than 75% of the original recorded flexural strength.
- Combustibility of cable tray assemblies: Not emit flaming or glowing particles or dropping particles that ignite the cotton layer situated below the flame application point
- Flame spread: Material meet a flame spread index lower than 25.

2.322 meters

Sizes & quantities

60x150: 399 meters / 60x300: 357 meters

100x300: 1.566 meters

Experience Basor
Desalt plants & water treatment plants

GLOBAL PROJECTS

TYPE	CITY	COUNTRY	NAME
Water treatment plant	Ali Mendjeli	Algeria	Ali Mendjeli water treatment plant
Desalt plant	Djinet	Algeria	Cap Djinet desalination plant
Desalt plant	Honaine	Algeria	Honaine desalination plant
Desalt plant	Mostaganem	Algeria	Mostaganem desalination plant
Wastewater plant	Bangkok	Thailand	Yannawa wastewater plant
Wastewater plant	Mong Duong	Vietnam	Mong Duong wastewater plant
Wastewater plant	Atontolico	Mexico	Atontolico de Tula sewage plant
Wastewater plant	Lerreynaga	Nicaragua	Larreynaga water treatment plant
Water treatment plant	Doukkala	Morocco	Al-Massira treatment plant
Water treatment plant	Alcalá de Henares	Spain	Alcalá de Henares Water Treatment Plant
Pumping station	Alcudia	Spain	La Alcudia pumping station
Desalt plant	Almería	Spain	Bajo Almanzora desalination plant
Desalt plant	Almería	Spain	Dalias desalination plant
Water treatment plant	Almusafes	Spain	Ford Factory Treatment Plant
Water treatment plant	Alzira	Spain	Alzira water treatment plant
Water treatment plant	Arcos de la Frontera	Spain	Arcos de la Frontera Water Treatment Plant
Water treatment station	Arjona	Spain	Arjona drinking water treatment station
Water treatment station	Badajoz	Spain	Badajoz drinking water treatment station
Water treatment station	Bétera	Spain	Bétera drinking water treatment station
Water treatment station	Buergos	Spain	Burgos drinking water treatment station
Water treatment station	Bullas	Spain	Bullas Drinking Water Treatment Station
Water treatment plant	Cáceres	Spain	Cáceres Water Treatment Plant
Desalt plant	Cádiz	Spain	Poniente desalination plant

Experience Basor
Desalt plants & water treatment plants

GLOBAL PROJECTS

TYPE	CITY	COUNTRY	NAME
Water treatment station	Fuente de Cantos	Spain	Fuente de León drinking water treatment
Water treatment plant	Gandia	Spain	Ull de Bou water treatment plant
Water treatment plant	Huesca	Spain	Huesca Water Treatment Plant
Water treatment station	Las Palmas de GC	Spain	Tamaraceite Drinking Water Treatment Station
Water treatment station	Menorca	Spain	Addaia Drinking Water Treatment Station
Pumping station	Mogente	Spain	Mogente pumping station
Water treatment station	Mohedas Granadilla	Spain	Granadilla drinking water treatment station
Pumping station	Oropesa Oropesa	Spain	Oropesa pumping station
Desalt plant	Oropesa	Spain	Oropesa desalination plant
Water treatment station	Rejas	Spain	Rejas Drinking Water Treatment Station
Wastewater plant	San Sebastián	Spain	Donosti sewage tank
Pumping station	Santoña	Spain	Santoña pumping station
Water treatment station	Sestao	·	
		Spain	Galindo drinking water treatment station
Water treatment station	Sevilla	Spain	Carambolo drinking water treatment station
Water treatment plant	Somosaguas	Spain	Somosaguas Water Treatment Plant
Water treatment station	Talavera 	Spain	Talavera drinking water treatment station
Desalt plant	Tenes	Spain	Ilanza desalination plant
Water treatment plant	Toledo	Spain	Navalcan treatment plant
Water treatment station	Toledo	Spain	Tefralux drinking water treatment station
Desalt plant	Torrevieja	Spain	Acuamed desalination plant
Water treatment plant	Valladolid	Spain	Valladolid Water Treatment Plant
Water treatment plant	Zambra	Spain	Aguas de Zambra water treatment plant
Pumping station	Al Massira	Morocco	Barrage Massira pumping station
Water treatment plant	Fez	Morocco	Autonomous water treatment plant
Wastewater plant	Tula	Mexico	Atotonilco wastewater plant
Water treatment plant	Kigoro	Nairobi	Kigoro Water Treatment Plant
Desalt plant	Aguilas	Spain	Aguilas Desalt plant
Piscina	Budapest	Hungary	Budapest Olimpic Pool
Wastewater plant	Cagnes Sur Mer	France	Cagnes Sur Mer wastewater plant
Water treatment plant	Tarija	Bolivia	Entre Rios water treatment plant
Water treatment plant	Kigoro	Kenya	Nairobi water treatment plant
Wastewater plant	Mostaganem	Algeria	Mostaganem sewage treatment plant
Wastewater plant	Beaumettes	France	Beaumettes wastewater plant
Wastewater plant	Dunaújváros	Hungary	Dunaújváros wastewater plant
Wastewater plant	Fez	Morocco	Fez sewage plant
Wastewater plant	Djineet	Algeria	Djineet wastewater plant
Water treatment plant	Bonneuil Sur Marne	France	Bonneuil Sur Marne treatment plant
Wastewater plant	Honaine	Algeria	Honaine wastewater plant
Water treatment plant	Ali Mendjeli	Algeria	Ali Mendjeli water treatment plant
Wastewater plant	Al Massira	Morocco	Al Massira sewage plant
Water treatment station	Villajoyosa	Spain	Villajoyosa drinking water treatment station

BASOR ELECTRIC S.A Headquarters

Avenida Alcodar 45-47 46701 Gandia SPAIN

+34 962876695 basor@basor.com www.basor.com

www.linkedin.com/ company/basor-electric-sa